Downloaded from rstb.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL |
OF SOCIETY

Heterogeneity and the Dynamics of Host-Parasitoid
Interactions [and Discussion]

M. P. Hassell, S. W. Pacala and G. A. Tingley

Phil. Trans. R. Soc. Lond. B 1990 330, 203-220
doi: 10.1098/rstbh.1990.0193

B

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

This journal is © 1990 The Royal Society


http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;330/1257/203&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/330/1257/203.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Heterogeneity and the dynamics of host—parasitoid
interactions

M. P. HASSELL! axp S. W. PACALA?

! Department of Biology and Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berks SL5 7PY, U.K.
® Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06268, U.S.A.

SUMMARY

This paper is concerned with the dynamical effects of spatial heterogeneity in host—parasitoid interactions
with discrete generations. We show that the dynamical effects of any pattern of distribution of searching
parasitoids in such systems can be assessed within a common, simple framework. In particular, we describe
an approximate general rule that the populations of hosts and parasitoids will be regulated if the
coefficient of variation squared (CV?) of the distribution of searching parasitoids is greater than one. This
criterion is shown to apply both generally and in several specific cases. We further show that C¥V* may be
partitioned into a density-dependent component (direct or inverse) caused by the response of parasitoids
to host density per patch, and a density independent component. Population regulation can be enhanced
as much by density independent as by density-dependent heterogeneity. Thus the dynamical effects of any
pattern of distribution of searching parasitoids can be assessed within the same common framework. The
paradoxical impact of density-independent heterogeneity on dynamics is especially interesting: the
greater the density independence, and thus the more scattered the data of percent parasitism against local
host density, the more stable the populations are likely to be. Although a detailed analysis of
host—parasitoid interactions in continuous time has yet to be done, evidence does not support the
suggestion of Murdoch & Oaten (1989) that non-random parasitism may have quite different effects on
the dynamics of continuous-time interactions. There appears to be no fundamental difference in the role
of heterogeneity in comparable discrete- or continuous-time interactions.

A total of 65 data sets from field studies have been analysed, in which percentage parasitism in relation
to local host density have been recorded. In each case, estimated values of C¥? have been obtained by
using a maximum likelihood procedure. The method also allows us to partition the CV? into the density
dependent and density-independent components mentioned above. In 18 out of the 65 cases, total
heterogeneity was at levels sufficient (if typical of the interactions) to stabilize the interacting populations
(i.e. CV*>1). Interestingly, in 14 of these it is the host-density-independent heterogeneity that
contributes most to the total heterogeneity.

Although heterogeneity has often been regarded as a complicating factor in population dynamics that
rapidly leads to analytical intractability, this clearly need not necessarily be so. The CV? > 1 rule explains
the consequences of heterogeneity for population dynamics in terms of a simple description of the
heterogeneity itself, and provides a rough rule for predicting the effects of different kinds of heterogeneity
on population regulation.
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INTRODUCTION

A relatively recent and major concern in population
ecology has been to determine the effects of het-
erogeneity on population dynamics. Earlier, theoretical
work tended, for convenience of analysis, to assume
completely homogeneous populations in which each
individual has the same chance of reproducing, and the
same risk of dying. The wealth of evidence to the
contrary has prompted the development of theoretical
frameworks for most types of species interactions that
take explicit account of heterogeneity between indi-
viduals. The common conclusion, whether one con-
siders competing species (see, for example, Atkinson &
Shorrocks (1981) ; Hanski (1981) ; Ives & May (1985)),
plant—herbivore interactions (see, for example, Craw-
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ley (1983)), hosts and pathogens (see, for example,
Anderson & May (1984) or predators and prey
(Comins & Hassell (1987)), is that heterogeneity
promotes the persistence of the interacting populations.
This paper considers the effects of heterogeneity on the
dynamics of one particular kind of predator—prey
system, that of insect parasitoids and their hosts.
Within the broad class of predatory metazoans, the
parasitoid lifestyle predominates; one recent estimate
of the number of parasitoid species is as high as 15 x 108
(Hochberg & Lawton 1990). Parasitoids occur in a
number of different insect groups (but mostly in the
Hymenoptera). They are recognized by their charac-
teristic life cycle which has aspects in common with
that of both predators and parasites. The adult female
lays her eggs on, in or close to the body of another
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Figure 1. Examples of field studies showing percentage parasitism as a function of host density. Curves are means
predicted from equation (3) evaluated at maximum likelihood estimates. () Direct density dependence from data set
25 in tables 2 and 3; (b) inverse density dependence from data set 9; (¢) direct density dependence from data set 33;
(d) density independent heterogeneity from data set 14; (¢) density independent heterogeneity from data set 39. (From

Pacala & Hassell 1990.)

arthropod (usually an insect), which is eventually
killed by the feeding parasitoid larva. In their effect on
a prey population, they are, in effect, predators where
the act of ‘predation’ involves oviposition rather than
direct consumption of the prey.

The two attributes of: (i) only the females searching
for hosts, and (ii) parasitism defining reproduction,
combine to make parasitoids particularly appropriate
subjects for the development of generalized predator—
prey models such as those of Lotka (1926) and Volterra
(1926) and Nicholson & Bailey (1935). In recent years,
the emphasis in this work has increasingly been to
determine how various forms of heterogeneity can
affect host—parasitoid population dynamics. Such
heterogeneity can arise in many ways, but most often
has been viewed in terms of a patchily distributed host
population with different probabilities of parasitism
from patch to patch (where the patch may be an
arbitrary sampling unit or some clearly recognizable
discrete unit of the habitat, such as a leaf or plant).

The widespread interest in the effects of hetero-
geneity on host—parasitoid dynamics has led many
workers to record the distribution of parasitism in the
field in relation to the local density of hosts per patch.
Of 194 different examples listed in the recent reviews of
Lessells (1985), Stiling (1987) and Walde & Murdoch
(1988), 58 show variation in attack rates among
patches depending directly on host density (figure
la, ¢), 50 show inversely density-dependent relations
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(figure 16) and 86 show variation uncorrelated with
host density (density independent (figure 14, e).

A popular interpretation of these data, guided by the
earlier theoretical literature (see, for example, Hassell
& May (1973, 1974); Murdoch & Oaten (1975)), has
been that only the direct density-dependent patterns
promote the stability of the interacting populations.
This, however, is not the true picture. Both inverse
density-dependent patterns (Hassell 1984; Walde &
Murdoch 1988), and variation in parasitism that is
independent of host density (Chesson & Murdoch
1986; Hassell & May 1988; Pacala et al. 1990 ; Hassell
et al. 1991), can in principle also be just as important
to population regulation. The reasons for this are
described below, but arise essentially because any
variation in levels of parasitism from patch to patch has
the net effect of reducing the mean parasitoid searching
efficiency (measured over all hosts) as average para-
sitoid density increases (the so-called ‘pseudointer-
ference’ effect of Free et al. (1977)). This has obvious
implications for the design of field studies on host—
parasitoid systems, because no longer can the effects of
such heterogeneity be inferred simply from the shape of
the relations between percentage parasitism and local
host density.

Our aims in this paper are threefold: (i) to show
that one can describe the effects of heterogeneity in
levels of parasitism using relatively simple criteria; (ii)
that this heterogeneity can be broken down into
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constituent parts that are density dependent and
density independent, and (iii) that these measures can
be readily applied to the kinds field data that are
normally available.

HOST-PARASITOID MODELS IN PATCHY
ENVIRONMENTS

Let us consider a habitat which is divided into
discrete patches (e.g. food plants for an herbivorous
insect) among which adult insects distribute their eggs.
The immature stages of these insects are hosts for a
specialist parasitoid species whose adult females forage
across the patches according to some as-yet-unspecified
foraging rule. We also assume that parasitism domin-
ates host mortality such that the hosts are on average
kept well below their carrying capacity.

Quite different modelling approaches have devel-
oped around this scenario, depending on whether the
generations of host and parasitoid are discrete, or
continuous with all stages overlapping. Difference
equations, stemming back to the Nicholson—Bailey
model, have been traditionally used to represent
discrete-generation interactions, while differential
equations in the Lotka—Volterra tradition have been
used for interactions with overlapping generations.
The principal difference between the two is that the
continuous-time models should exhibit more stable
dynamics than the corresponding models in discrete
time (May 1974). This view has recently been
challenged by Murdoch & Oaten (1989), and is
further discussed below.

Yet a third approach to modelling host—parasitoid
interactions has recently been developed by R. M.
Nisbet and W. S. C. Gurney and colleagues by using
systems of time-lagged differential equations incor-
porating age-structure and developmental rates
(Nisbet & Gurney 1983; Gurney, Nisbet & Lawton
1983; Gurney & Nisbet 1985; Murdoch et al. 1987).
An interesting property of such continuous models with
time lags, first shown by Auslander et al. (1974), is the
appearance of population cycles with a period of
roughly one host generation interval. This has recently
been more fully discussed by Godfray & Hassell (1987,
1989) who showed that, despite the continuous
interaction, such models can show either stable
populations with all stages overlapping, or cycles more-
or-less recovering the discrete generation interactions
described above. Which of these outcomes occur
depends largely on the ratio of the lengths of the host
and parasitoid life cycles.

(a) Interactions in discrete time

In this paper, we focus principally on discrete-time
interactions and commence with a familiar framework
for such interactions (Hassell 1978):

Nt+1=/1Ntf<Nt)Pt>7 (la)

P =wN,(1—f(N,P,)). (18)

Here N and P are the host and parasitoid populations
in successive generations ¢ and ¢4 1, A is the host’s finite

Phil. Trans. R. Soc. Lond. B (1990)

M. P. Hassell and S. W. Pacala 205

rate of increase in the absence of the parasitoid (the
fecundity per adult discounted by the average of all
mortalities other than parasitism), and w is the average
number of female parasitoids emerging from each host
parasitized (henceforth assumed to be one). Finally,
SN, B) is a function giving the average fraction of
hosts that escape parasitism, and whose form depends
upon all the factors that affect the rate of parasitism of
hosts by the £, searching adult parasitoids. An internal
equilibrium of (la,b) is defined by: Af[N* P*) =1
and P* = N*(1—1/A), and is locally stable if

— A2/ (A—1) PROf(N*, P*)JoP, < 1, (2a)

(A=1)/A(—Qf(N*, P¥)/OP,) > Of(N*, P*) JON,.  (2b)

In a habitat composed of discrete patches, the term
JIN,FB)in (la) and (16) represents the average, across
all patches, of the fraction of hosts escaping parasitism.
The distribution of hosts in such a patchy setting can
either be random or vary in some other prescribed
way. Similarly, the density of searching parasitoids in
each patch can either be a random variable in-
dependent of local host density or a deterministic
function of local host density. We call these patterns of
heterogeneity in parasitoid distribution host density-
independent heterogeneity (HpI) and host density-
dependent heterogeneity (HDD), respectively (Pacala
etal. 1990; Hassell et al. 1991). Comparable terms have
been coined by Chesson & Murdoch (1986) who
labelled models with randomly distributed parasitoids
as pure error models and those with parasitoids
responding to host density in a deterministic way as
pure regression models.

A more biological interpretation of the stability
criteria (24) and (24) is as follows. The process of
parasitism generates negative covariance between the
local (within-patch) abundance of parasitoids and the
local abundance of surviving hosts. This is simply
because high densities of parasitoids result in high
levels of parasitism and correspondingly low densities
of surviving hosts. Let C, be the covariance, at
equilibrium and at the end of a growing season,
between the local densities of parasitoids and un-
parasitized hosts divided by the product of the
equilibrium mean densities of parasitoids and un-
parasitized hosts. The division by the product of the
means produces a scaled covariance in the same way
that dividing a variance by the square of the mean
produces a scaled variance (the square of the coefficient
of variation). Similarly, let C, be the scaled covariance
of the local parasitoid and total (parasitized and
unparasitized) local host densities at equilibrium. C,
may be thought of as the scaled covariance at the
beginning of the growing season (before any parasitism
takes place).

In the Appendix, we show, under quite general
assumptions, that condition (2a) is equivalent to C,+
1 < (C,+1)Z(A), where Z(A) decreases from one to
zero as A increases from one to infinity (A must be
greater than one for the host to be able to persist even
in the absence of parasitism). In the vicinity of A = 1,
Z(A) is approximately equal to 1/A = 1. Thus, as A
increases from one to infinity, condition (2a) changes
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from C, < C, to C, < —1. For dynamics to be stable,
the process of parasitism must reduce C, to a level
sufficiently below C,. In other words, the process of
parasitism must sufficiently spatially segregate para-
sitoids and unparasitized hosts. Obviously, small C,
implies that, at the end of a growing season, parasitoids
are found primarily in patches that contain small
numbers of uninfected hosts. This spatial segregation
reduces the efficiency of the parasitoids and so acts to
stabilize the host—parasitoid interaction. The level by
which C, must be reduced relative to C, is an increasing
function of the host’s intrinsic rate of increase (A). Host
populations with large A’s rebound quickly and so are
more difficult to stabilize than host populations with
small A’s.

Stability condition (26) is discussed fully in the
Appendix. Suffice it to say here that the condition is
always likely to be satisfied and (24) is thus usually
necessary and sufficient for stability.

Hassell & May (1988) suggested a very simple
approximation of condition (2a) which states that
interactions of the form of (la,b) are stable if the
.distribution of parasitoids from patch to patch (meas-
ured as the square of the coefficient of variation, CV?)
is sufficiently heterogeneous. In particular, if the
density of searching parasitoids in the jth patch is g,
(j=1,2,...,2), the CV? of the ¢; across the z patches
should exceed one. More recently, Pacala et al. (1990)
and Hassell ¢f al. (1990) have extended this wark and
showed that a very similar criterion applies across a
range of models in discrete time. Their criterion differs
in that the density of searching parasitoids per patch is
now weighted by the number of hosts in that patch.
Thus, if p, is the density of searching parasitoids in the
vicinity of the ¢th host (1 =1,2,...,y), the stability
criterion now becomes that the CV? of the p, measured
across all y hosts should exceed one. In what follows,
‘CV® refers exclusively to the coefficient of variation
squared of the p,.

To show the generality of this criterion for discrete-
generation host—parasitoid systems, we now survey a
range of models in all of which the ‘CV? > 1 rule’
applies either exactly or approximately. A brief
summary is given in table 1 and full details in Hassell

et al. (1990).

Model 1

Consider a specific situation in which the host
distribution across patches is arbitrary, and the
distribution of parasitoids is unrelated to that of their
hosts. It is, therefore, an Hb1-model as the heterogeneity
is host density independent, local densities of searching
parasitoids are determined by chance and by responses
to environmental cues that are uncorrelated with host
densities per patch. More specifically, let us assume
that parasitoid density varies as a gamma distributed
random variable from patch to patch, such that the
fraction of hosts that escape parasitism in (la,b) is
given by:

fp) = f " gle) e de. (3)

0

Here g(€) is the gamma probability density function for
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parasitoids per patch with unit mean and variance 1/a,
where a is a positive constant governing the shape of
the density function and « is the usual term for the per
capita searching efficiency of the parasitoid. The term
exp (—aF,e) is thus the zero-term of a Poisson
distribution with mean aF,e. It gives the probability of
a host being attacked zero times by parasitoids that
search randomly within a patch containing searching
parasitoids at density Fe.

Hassell et al. (1990) show that equation (3) reduces
to

S&B) = [af(ax+aP)]".

A host—parasitoid equilibrium always exists if A > 1,
and will be locally stable if

a[l—1/AV] < 1—1/A, (4)

which will always be true if & < 1. The CV? for gamma
distributed parasitoids in this model is simply 1/, so
that the condition « <1 is identical to CV? > 1.
Notice, incidentally, that this model is formally
identical with the phenomenological model proposed
by May (1978), in which parasitoid attacks are
effectively distributed in a negative binomial manner
with clumping parameter, k(k = o).

Model 11

From the extreme of no correlation between the
spatial distributions of parasitoids and hosts, the second
example goes to the opposite extreme of a perfect
correlation between the two. Local parasitoid density
now deterministically tracks patch-to-patch variation
in host density, presumably due to some deterministic
foraging rule dominating parasitoid distribution.
Specifically, let us suppose it is now the local host
density (z) that varies from patch to patch as a gamma
distributed random variable with mean &, Local
parasitoid density is given by a regression function,
P(n/N,)", where u is a constant governing the degree to
which parasitoids aggregate in patches of high host
density. The aggregation is directly density dependent
if 4 >0 and inversely density dependent if y <0
(Hassell 1984). This expression has been widely used in
host—parasitoid models (see, for example, Hassell &
May (1973); Hassell (1984); Kidd & Mayer (1983),
and provides better fits than an analogous linear
function to the kind of data in figure 1, particularly in
accounting for the curvature of inverse density de-
pendence (figure 14). The average fraction of hosts
surviving parasitism can now be written as

S2) =f 8(x) xe“ PN dy, ()
0
where g(x) is the unit mean gamma density and
x=n/N,.

Stability in model II is only affected by three
parameters A, x and a. The relation of these to the CV?
is shown by the numerical examples in figure 2. The
CV? > 1 rule is now only the approximate condition for
stability, but the approximation is good for values of A
near one and for highly aggregated host distributions
(small values of &) (figure 2).
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Figure 2. Stability criterion for model II. The internal
equilibrium is stable for values of x4 and a above the
appropriate dashed curve, and is unstable for values below.
The solid curve shows values of g and « at which CV? = 1.
CV? > 1 above the curve and CV? < | below. (From Hassell
et al. 1990.)

Model 111

Models T and II represent end-points of the
continuum between HDI and HDD. They also include
restrictive, though reasonable, assumptions about the
different functional forms (e.g. gamma distributed
populations or power-law dependence of local para-
sitoid on local host densities). We now consider a much
more general model that relaxes these assumptions:
spatial distributions are left unspecified and any degree
of spatial covariance between parasitoid and host is
allowed.

Specifically, we assume that the distribution of the
relative numbers (n = N/N,) of hosts in patches does
not change with host density, but otherwise can be of
any distribution whatsoever. We also assume that the
mean density of parasitoids in a patch is given by the
function F,g(n) U. Here, g is an arbitrary function of
host density that determines host density dependent
aggregation by parasitoids. In contrast, U is a random
variable with a mean of one that determines the level
of upr. This random variable creates heterogeneity
among patches in their relative attractiveness to
parasitoids that is independent of the host abundances
in the patches. Finally, we assume that the actual
number of parasitoids visiting a patch is Poisson
distributed about the patch-specific mean, P,g(n) U.

With these assumptions, the fraction of parasitoids
that escape parasitism, f(N,F), is given by E(e™*?),
where £ is the expectation across all hosts and p is
Poisson distributed about a mean, P, g(n) U, which is
itself a random variable (because of U) and a function
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of host density. It is important to note that between-
patch variation in F,g(n) U reflects non-random ag-
gregation by parasitoids because it reflects differences
among patches to which parasitoids respond. In
contrast, the Poisson variation in p reflects a purely
random distribution of parasitoids.

The analysis of this general model is possible if A is
close to one. The derivation in Hassell ¢t al. (1990)
shows that the host—parasitoid interaction is stable if
approximately CV?—1/p* > 1, where p* is the average
number (not density) of parasitoids that visit a patch at
equilibrium. This average is again calculated with
respect to a randomly chosen host. If, on average, there
are several parasitoid visits per patch, then we
approximately recover the CV? > 1 rule. If, on the
other hand, the average visits per patch is very low
(e.g. < 1) the value of CV? required for stability will
increase. For example, with an average of one
parasitoid visit per patch the stability criterion becomes
CV* > 2. This arises because the term 1/p* is the
component of CV? that is caused solely by purely
random (Poisson) variation in parasitoid abundance
among patches. Because this quantity is subtracted
from CV?, Poisson variation does not contribute in any
way to stability. Thus, host density independent
heterogeneity only facilitates stability if it reflects non-
random aggregation of parasitoids.

The next 2 models are used to demonstrate that
the CV?> 1 rule is robust to at least some major
changes in the biological assumptions underpining
models I-III.

Model IV

The previous models have all been set in an explicitly
patchy environment. We now turn to a model that
breaks away from this mould and shows that the
CV®> 1 rule can also apply when the heterogeneity
arises in quite different ways. Insects in general possess
a powerful haemocytic defence mechanism that enables
them to encapsulate foreign objects, such as parasitoid
eggs and larvae, recognized as ‘non-self”. Hetero-
geneity now arises if there is variability between
individual hosts in their ability to encapsulate para-
sitoids within them. Godfray & Hassell (1990) consider
two cases: (i) all-or-none encapsulation where the
probability of a host individual escaping parasitism by
encapsulation is constant, irrespective of the number of
parasitoid larvae it contains, and (ii) dosage-dependent
encapsulation where the probability of a host surviving
parasitism decreases with parasitoid load. Other forms
of encapsulation (e.g. a threshold number of parasitoid
larvae required to trigger the host’s response) are
possible, but were not considered.

In all-or-none encapsulation there are essentially
two classes of host: those not encountered by para-
sitoids and those encountered one or more times.
Within the framework of equation (1), this reduces to
a straightforward refuge model whose properties are
well-known (Hassell 1978). Furthermore, if hetero-
geneity is now introduced by individual hosts varying
in their ability to encapsulate parasitoids Godfray &
Hassell (1990) show this to have no affect on
population dynamics.
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With dosage-dependent encapsulation, however,
explicit account must now be taken of hosts that are
attacked once, twice, three times, etc. Assuming
random search and a fixed probability, 7, of a parasitoid
being encapsulated leads directly back to the Nichol-
son—Bailey model with the searching parameter a
reduced to a’ = a(1 —r). The stability properties, which
are independent of @, are thus unchanged. This is no
longer the case, however, if heterogeneity in the ability
of hosts to encapsulate is introduced. Let us assume
that » now varies randomly among hosts with prob-
ability density function ¢(r). If the number of attacks
per host is a Poisson random variable, if one egg is laid
per attack and if the probability that any one host
successfully encapsulates n eggs is 7", then we may write

JU) as
f@0=jvvﬂwmkmw- (6)

0
In effect, each host is being viewed as a patch and,
because of inter-host variation in 7, there is inter-patch
variation in the mean level of successful parasitism.
Godfray & Hassell (1990) then derive a local stability
criterion, whereby as long as A is not too large, then the
necessary and sufficient condition for local stability is
approximately

o2/ (1-7)2 > 1, (7)

where ¢? is the variance of r, and (1 —7) is the mean.
Thus, once again the CV?>1 rule emerges as an
approximate stability condition.

Model V

The preceding models assume that all hosts and
parasitoids redistributed themselves each generation
among the available patches. While there are many
natural examples of this, particularly from univoltine
species, there are also many cases of less complete
mixing, where some of the hosts and parasitoids tend to
remain within the patch from which they originated.
This final model caters for this by allowing some hosts
and parasitoids to stay in the patches from which they
emerged, while the remainder enter a ‘pool’ to be
redistributed anew in the next generation (Hassell &
May 1988; Reeve 1988; Hassell et al. (1990)). There is
thus a continuum from complete host or parasitoid
mixing to no host mixing at all. Assuming, for
simplicity, that the probability of leaving a patch is
density independent and that there is no mortality
associated with the movement, the hosts and adult
parasitoids in the ith patch, N, and P, respectively, are
now given by

N,(t+1) = A[Si(l —x;) +oc,.{§ ijj}], (8a)
Pi(t+1) = Nai<l—yi>+ﬂi{§ Najy]'}‘ (85)
=1

Here @, and f, are the fractions of dispersing hosts and
parasitoids, respectively, that enter the ith patch, S,
is the number of these hosts surviving from parasit-
ism and N, the number of hosts parasitized
(N,[1—exp (—akF)]). Finally, x, and y, are the fraction
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STABLE
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Fraction of parasitoids dispersing

Figure 3. A numerical example from model V. The histogram
bars show the values of CV? at equilibrium as a function of the
fraction of parasitoids that disperse each generation (y in
equation (8)). The model is stable, with CV?* > 1, provided
that at least 70 9%, of the parasitoids disperse each generation.
Below this value, the model shows limit cycles and CV?
fluctuates with mean values less than one. Parameter values
are: A = 2, a = 0.01, £ (negative binomial) = 1 and n = 20.
(From Hassell et al. 1990.)

of host and parasitoid progeny, respectively, leaving
the patch for subsequent redistribution in the next
generation, and # is the total number of patches.

Numerical studies indicate that the CV?* rule is a
good indicator of stability for the model. For example,
suppose that there is complete host mixing in each
generation (x;, = 1), and that the fraction of parasitoids
mixing varies from zero to one. We assume an even
host distribution, and that those parasitoids that do
disperse redistribute themselves according to a negative
binomial distribution. The model is thus an HpI-model,
not dissimilar to model I. Figure 3 shows a numerical
example in terms of the CV? of the parasitoid
distribution at equilibrium as the fraction of parasitoid
mixing is changed. Once again the CV? > 1 rule is a
good indicator of stability.

(b) Parasitoid aggregation and the heterogeneity of
risk

Chesson & Murdoch (1986) define a quantity, p, the
relative risk of parasitism for a host individual, as a
means of unifying the analysis of both HDI-models
(their ‘pure-error’ models) and HDD-models (their
‘pure-regression’ models). Heterogeneity in this risk of
parasitism is the commodity that affects the stability of
the populations. The ‘CV? > 1 rule’, in contrast, is
defined in terms of heterogeneity in the distribution of
searching parasitoids. In models I-V (with assumed
type I functional responses) this is generally the same
as heterogeneity in the risk of parasitism. As Ives
(1990) has recently pointed out, however, the dis-
tribution of parasitoids may differ from the distribution
of risk if functional responses are sufficiently nonlinear.
Thus in cases involving nonlinear functional responses,
CV*® refers specifically to heterogeneity in risk of
parasitism. Further numerical work is needed to assess
the generality of the CV?> 1 rule when functional
responses are markedly nonlinear over realistic ranges
of host densities per patch.

(87]
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(¢) Continuous redistribution in discrete time

Finite difference equation models such as (1) are
probably most appropriate for species with non-
overlapping generations. Such species are more typical
of seasonal habitats, although Godfray & Hassell (1987,
1989) showed that developmental time-lags can, under
some conditions, lead to cycles of approximately one
generation period in species that would otherwise
reproduce continuously. Even so, many continuously
reproducing species do have overlapping generations
and are probably best modelled by systems of differ-
ential equations.

Although restricted to species with non-overlapping
generations, the discrete time model (1) can account
for death and movement that occur continuously
within a discrete generation. Models I-III, however,
are most applicable to host species that are distributed
amongst patches at the beginning of a growing season
and do not disperse until the following season. The
parasitoids in these models, however, may be viewed as
either sedentary or highly dispersive (or anything in
between). For example, model I is appropriate if
parasitoids are sedentary within a season and are
gamma distributed amongst patches, or if the time
spent in each patch by each continuously dispersing
parasitoid is gamma distributed.

In contrast, rapid within-season movement by hosts
tends to expose each host to the same suite of parasitoid
densities and hence to the same risk of parasitism.
Rapid host movement can thus decrease heterogeneity
(CV?) caused by parasitoids. Godfray & Pacala (1990)
show that with infinitely rapid within-season move-
ment, and thus no heterogeneity of risk, the system
collapses to the unstable Nicholson-Bailey model if
parasitoid aggregation is independent of host density.
If aggregation is density dependent, however, stability
is possible if the host distribution is sufficiently
clumped.

(d) Overlapping generations in continuous time

In this section we turn to continuous-time analogues
of (1) and argue that, despite recent claims to the
contrary (Murdoch & Oaten 1989), heterogeneity is
also generally stabilizing in continuous-time host—
parasitoid models.

Perhaps the most simple system of differential
equations in a patchy environment analogous to (1) is:

Q
dN,/dt = bN,—aP,N,—e, N, +z,¢, 2 N, (9a)

Jj=1

Q
dP;/dt = vaP; N;—dP,—e, P;+g,¢, % P,
=1

(1=1,2,..Q), (9%)

where B, and N, are the local densities of parasitoid and
host in patch ¢, b is the density independent growth rate
of the host, a is the mean searching efficiency of the
parasitoid, v is the reproductive efficiency of the
parasitoid, 4 is the death rate of the parasitoid, and ¢,
and ¢, are the rates at which hosts and parasitoids
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disperse. Finally, z, and ¢, are the fractions of dispersing
hosts and parasitoids, respectively, that enter patch i,
where ¢; may be either constant or a function of local
host density.

The model (9) assumes that parasitized hosts that
have not yet died have no effect on dynamics. The
inclusion of living, but parasitized ‘zombies’ would
make the system more directly analogous to the
discrete-time models above (Godfray & Pacala 1991).
Zombies affect dynamics because most parasitoids
cannot perfectly distinguish infected and uninfected
hosts. If parasitoids disperse to regions of high total
host density, then parasitoids will occur primarily
where uninfected hosts do not. This is one mechanism
that reduces C, (spatial covariance between uninfected
hosts and parasitoids) and thus stabilizes the dynamics
of discrete-time models (see above).

Host—parasitoid models such as (9) have received
much less attention than corresponding models in
discrete time. In a recent study, Godfray & Pacala
(1991) showed that (9) has neutrally stable dynamics
in several cases where there is no heterogeneity of risk
at equilibrium — for example, when there is (1) no
dispersal ¢, = ¢, = 0, (2) purely homogeneous dispersal
(z;=2z; and ¢, = g; for all ¢ and j), and (3) infinite
dispersal (¢, 00, e¢,—00). If there is finite and
heterogeneous dispersal, however, they showed that
heterogeneity of risk caused by parasitoid aggregation
is typically stabilizing, just as it is in discrete models.

In a recent study of continuous-time models,
Murdoch & Oaten (1989) arrive at the opposite
conclusion. Specifically, they contend that density
independent aggregation has no effect on stability in
continuous time and that the effect of density de-
pendent aggregation depends on the rate at which the
variance in local host density changes with the mean.
If this variance is equal to AN®, where N is the mean
host density and 4 and x are constants then density
dependent aggregation is stabilizing for x > 2 and
destabilizing for x < 2. They argue that the latter case
is more common in nature (Taylor et al. 1980).
Interestingly, these results are identical to those
obtained by Godfray & Pacala (1991) from their
discrete-time model referred to above with infinitely
rapid host and parasitoid movement within each
season.

Murdoch & Oaten (1989) do not explicitly model
the dynamics of each of several spatial patches. Rather,
their model consists of a pair of differential equations
governing the mean parasitoid and host abundances
across all patches. They also assume that the covariance
of local parasitoid and host abundances is given by one
of several simple functions of the mean abundances
across all patches. Godfray & Pacala (1990) show that
Murdoch & Oaten’s model is obtained from explicitly
spatial models, such as (9), in the limit of infinitely
rapid movement by both species (i.e. ¢, > 00, ¢, = c0),
or if dispersal is governed by complex and biologically
implausible density dependent rules.

Since the host stages attacked by parasitoids are
generally relatively sedentary, and some degree of
heterogeneity of risk is likely to be the rule in nature
systems, models with infinite interpatch movement and
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no heterogeneity of risk would generally seem to be
inappropriate. We conclude that aggregation by
parasitoids generally acts to stabilize host—parasitoid
interactions whether in continuous or discrete time.

ESTIMATING PARAMETERS FROM FIELD
DATA
(a) The method

The CV? > 1 rule is in terms of the distribution of
searching parasitoids. Such data, however, are rarely
available from natural populations (see also Waage
1983 ; Casas 1988, 1989); most of the information is in
the form of relationships between percent parasitism
and host density per patch (figure 1). In this section we
show how the parameters necessary to calculate the
CV? can be estimated from such data. Full details of the
technique are given in Pacala & Hassell (1990).

We begin by assuming that the local parasitoid
density can be described by the regression function (see
model II above) with multiplicative residual e:

n \
p=cP, (7\7—‘) €, (10)
where 7 is the local host density, ¢ and g are constants,
and € is a unit mean gamma distributed random
variable (as for model 1). Thus, host density dependent
heterogeneity is described by the expression (n/N,)*,
with the magnitude of the association between local
parasitoid and local host density governed by the value
of p. The magnitude of any host density independent
heterogeneity is determined by the gamma distributed
random variable €, with the magnitude of HDI
increasing with the variance of e. (Note that the
methods described below also apply to functional forms
of HDD other than (10). To extend the methods
outlined below to another function g(r), the steps are
merely repeated after substituting the new g(n) for
(n/ N~
With these assumptions

s = [ [ sorvpve -
x exp (—acP,(n/ N,)"¢) dedn, (11)

where ¢(n/ N,) is the distribution of n/ N, and y(¢€) is the
unit-mean gamma density.

Pacala & Hassell (1991) show that CV? > 1 from this
general model may be approximated as:

CVP~C,Cp—1. (12)

Here C,=1+0? and represents the component of
heterogeneity that is independent of host density, and
C,=1+41%* and represents the component that
depends on host density. The term o? is the variance of
€ and V is the coefficient of variation of the local host
density calculated with respect to a randomly chosen
host.

Notice from (12) that (1) CV? > 1 if either C; > 2 or
C, > 2, (2) that C; and C,, both affect CV* > 1 in the
same way and (3) that because the slope-determining
expression g in C, is squared, the effects of direct
(positive slope) and inverse (negative slope) depen-
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dence on local host density are identical. Thus all of
the patterns shown in figure 1 contribute to population
regulation in the same way irrespective of whether the
density dependence is positive or negative, or if there is
no density dependence at all. The degree to which each
affects stability just depends on the magnitude of the
Ccre.

The method of obtaining CV? from field data
involves estimating u, 0® and acP, from equation (11)
by using a maximum likelihood procedure, and
estimating V7 for the host distribution directly from the
data on local host densities. (Values of o® were
constrained to be > 0.05 to prevent numerical over-
flow during computation. As a result, estimates of o
reported as 0.05 are actually between 0 and 0.05. In
these cases, the calculated value of CV? is an over-
estimate, but the bias is less than 59, (Pacala & Hassell
1991).

(b) The data

The data set that we have analysed involves 65
examples from field studies reporting percent para-
sitism versus local host density per patch, for each of
which we have obtained estimates of %, y and V2, and
thence calculated C;, C,, and CV? (table 3). Of these, 32
are listed in two recent reviews by Stiling (1987);
Walde & Murdoch (1988). We have also added a
further 33 examples, mainly from unpublished studies.
The full assemblage is listed in table 2. Other studies,
listed but not used here, were found to be unsuitable for
our analysis, usually because the per patch sample sizes
were unreported. Several of these data sets are
temporal or spatial replicates of others. We have,
therefore, also produced a reduced assemblage of 26
data sets by choosing a single replicate at random and
omitting all others (designated by an asterisk in the
first column of the table 3). Each of this reduced set
thus describes a different pair of species.

(¢) Results

For each example in tables 2 and 3, the estimated
value of the CV* can be evaluated in relation to the
CV?>1 rule and the relative importance of density
dependent and density independent heterogeneity
(HDD versus HDI) to the total heterogeneity determined.
It is also possible in each case to predict the mean
percent parasitism in relation to host density per patch
from the expression:

100[1 —a(oc+acPt (7\/”—;)”)] (13)

where a, acP, and p are the maximum likelihood
estimates referred to above. This is shown for the range
of examples in figure 1 where each fitted curve
represents the percent parasitism predicted by the mean
of (11) evaluated at the maximum likelihood estimates.
In all cases the correspondence is quite close between
the predicted and actual mean levels of parasitism.
Figure la shows an example of a direct density
dependent pattern of parasitism (data set 25 in tables
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THE ROYAL
SOCIETY

14*
15%

16*
17

18%*
19*

20
21%*

PHILOSOPHICAL
TRANSACTIONS
OF

22%
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27%*
28
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34
35
36%*
37*

38
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39*

40*
41

42%
43
44
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Phil.

Bupalus piniaria
(Geometridae)

B. pimiaria

B. pimaria

B. piniaria

B. piniaria

B. piniaria

B. piniaria

B. pimiaria

Lymantria dispar
(Lymantriidae)
Trirhabda virgata
(Chrysomelidae)

Microrhopala virtata
(Chrysomelidae)

Eurosta solidasinus
(Tephritidae)

Rhopalomyra californica
(Cecidomyiidae)

R. californica

Silo pallipes
(Goeridae)

Sceliphron assimile
(Sphecidae)

Andricus quercuscalicts
(Cynipidae)

A. quercuscalicis

A. quercuscalicis

A. quercuscalicis

Phytomyza ilicis
(Agromyzidae)

Papilio xuthus
(Papilionidae)

Delia radicum
(Anthomyiidae)
. radicum

D

D. radicum

D. radicum

D. radicum

D. radicum

D. radicum

D. radicum

D. radicum

Chirosia histricina
(Anthomyiidae)

Fiorinia externa
(Diaspidae)

F. externa

F. externa

Epinotia tedella
(Tortricidae)

E. tedellae

Parlatoria oleae
P. oleae

P. oleae

Coleophora laricella
(Coleophoridae)

C. laricella

C. laricella

C. laricella

T'rans. R. Soc. Lond. B (1990)

Dusona oxyacanthae
(Ichneumonidae)

. oxyacanthae

. oxyacanthae

. oxyacanthae

. oxyacanthae

. oxyacanthae

. oxyacanthae

. oxyacanthae

Qoencyrtus kuwanai
(Encyrtidae)

Mirmithid nematodes

Soobboo

Erythreid mites

Eurytoma gigantea

E. obtuswentris
(Eurytomidae)
Torymus baccaridis
(Torymidae)
Tetrasticus sp.

Agriotypus armatus
(Agriotypidae)

Mellittobia chalybii
(Eulophidae)

Mesopolobus fuscipes
(Pteromalidae)

M. fuscipes

Mesopolobus xanthocerus

M. xanthocerus

Chrysocharis gemma
(Eulophidae)
Trichogramma papilionis
(Trichogrammatidae)
Trybliographa rapae
(Eucoilidae)

T. rapae
(Eucoilidae)

rapae

T. rapae

T. rapae

T. rapae

T.

T.

T.

=

rapae
rapae
rapae
Total parasitism

Aspidiotiphagus citrinus
(Eulophidae)

A. citrinus

A. citrinus

Apanteles tedellae
(Braconidae)

Pimplopterus dubius
(Ichneumonidae)

Aphytis paramaculicornis
(Aphelinidae)

Coccophagoides utilis
(Aphelinidae)

A. paramaculicornis

Agathis pumila
(Braconidae)

A. pumila

A. pumila

A. pumila

[90]

N. Broekhuizen (unpublished data)

N. Broekhuizen (unpublished data)
. Broekhuizen (unpublished data)

. Broekhuizen (unpublished data)

. Broekhuizen (unpublished data)

( )

( )

)

. Broekhuizen (unpublished data
. Broekhuizen (unpublished data
Brown & Cameron (1979)

N
N
N
N. Broekhuizen (unpublished data
N
N

N. Cappuccino (unpublished data)
N. Cappuccino (unpublished data)

N. Cappuccino (unpublished data)

Ehler (1986)

Ehler (1986)
Elliott (1983)

Freeman & Parnell (1983)
Hails (1988)

Hails (1988)
Hails (1988)
Hails (1988)
Heads & Lawton (1983)

Hirose ¢t al. (1976)
Jones & Hassell (1988)
Jones & Hassell (1988)

Jones & Hassell (1988)

Jones & Hassell (1988)

Jones & Hassell (1988)

Jones & Hassell (1988)

T. H. Jones (unpublished data)
T. H. Jones (unpublished data)
T. H. Jones (unpublished data)
J. H. Lawton (unpublished data)

McClure (1977)

McClure (1977)

McClure (1977)
Munster-Swendsen (1980)
Munster-Swendsen (1980)
Murdoch et al. (1984)
Murdoch et al. (1984)

Murdoch et al. (1984)
R. B. Ryan (unpublished data)

R. B. Ryan (unpublished data)
R. B. Ryan (unpublished data)
R. B. Ryan (unpublished data)
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45  C. laricella A. pumila

46 C. laricella A. pumila

47 C. laricella A. pumila

48 C. laricella A. pumila

49 C. laricella A. pumila

50  C. laricella A. pumila

51 C. laricella A. pumila

52 C. laricella A. pumila

53 Aonidiella aurantii Aphtyis melinus
(Diaspidae) (Aphelinidae)

54* A, aurantii A. melinus

55  A. aurantii A. melinus

56 A. aurantii A. melinus

57%  Eupteryx cyclops Anagrus sp.
E. urticae (Mymaridae)
(Cicadellidae)

58%*  Polistes exclamans Elasmus polistis
(Vespidae) (Elasmidae)

59  P. exclamans E. polistis

60* Icerya purchasi

(Margarodidae) (Cryptochaetidae)

61 I purchas: C. iceryae

62 I purchasi C. iceryae

63 L purchasi C. iceryae

64* Trypargilum politum Melittobia sp.
(Sphecidae) (Eulophidae)

65  Lymantria dispar Ooencyrtus kuwanai
(Lymantriidae) (Encyrtidae)

Cryptochaetum iceryae

. B. Ryan (unpublished data)
. Ryan (unpublished data)
. Ryan (unpublished data)
. Ryan (unpublished data)
. Ryan (unpublished data)
. Ryan (unpublished data)
. B. Ryan (unpublished data)
. B. Ryan (unpublished data)
Smith & Maelzer (1986)

R
R.B
R.B
R: B
R.B
R.B
R.B
R

Smith & Maelzer (1986)
Smith & Maelzer (1986)
Smith & Maelzer (1986)
Stiling (1980)

Strassmann (1981)

Strassmann (1981)
Thorarinsson (1990)

Thorarinsson (1990)
Thorarinsson (1990)
Thorarinsson (1990)
Trexler (1985)

Weseloh (1972)
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* Reduced list with no spatial or temporal replicates.

2 and 3). The calculated CV? for this data set is 1.16,
from which we can predict (assuming this to be a
typical result in successive generations) that such levels
of heterogeneity in parasitism would be just sufficient
to stabilize the interaction. The relatively large value
for C,, (2.06) and small value for C, (1.05) indicate that
virtually all of the stabilizing heterogeneity in this
example comes from the host density dependent
heterogeneity (HDD). This arises from two biological
properties of the interacting populations: (i) the large
spatial covariance of the parasitoids with local host
density, indicated by the relatively large value of 4 (=
1.37), and (ii) the highly aggregated spatial dis-
tribution of the host (indicated by the relatively large
coeflicient of variation of the host population (V? =
0.66).

Figure 15 shows a further example (data set 9) where
parasitism is strongly correlated with host density per
patch, but in this case the pattern is inversely density
dependent (# = —0.95). However, in contrast to the
previous example, HDD is only slightly larger than HpI
(Cp,=129; C;=1.11) and they thus combine to
produce only a low level of total heterogeneity in
parasitism (CV?=0.37). The small effect of HDD,
despite the relatively large value of u, stems from the
low level of spatial aggregation of the host population
(V2 =0.25). In short, such levels of heterogeneity
would be too small to contribute significantly to
population regulation. This prediction is reassuring in
the light of the spectacular quasi-periodic outbreaks
sometimes shown by the gypsy moth (Myers 1988).

Figure 1¢ (data set 33) provides a further example of

Phil. Trans. R. Soc. Lond. B (1990)

pronounced spatial density dependence (# = 0.87) but

- a low value of CV? (= 0.34). Once again, there is too

little aggregation in the host distribution (V2 = 0.21)
for the HDD to contribute appreciably to heterogeneity.

Figure 14 (data set 14) shows a case that is quite
different from the previous three. Density independent
(HDI) variation in parasitism is now much more
important than density dependent variation (upp) (C,
= 8.25; C, = 1.01). Furthermore, because C,; is sig-
nificantly greater than 2, heterogeneity independent of
host density is large enough by itself to stabilize the
interacting populations. The prediction of stability
thus does not depend at all on the host’s spatial
distribution, or on the existence of spatial covariance
(beginning-of-season) between the parasitoid and host.
Hence, although the data in 14 appear erratic, they
actually contain more evidence of factors that could
stabilize dynamics than do the previous examples.

Finally, figure le¢ (data set 39) shows another
example with virtually no stabilizing heterogeneity.
There is no appreciable effect from HbI (the estimate of
o? is at the constrained lower bound), and there is no
sign of the parasitoids responding to local host density
(n = 0.07).

Rather than survey each of the 65 examples in table
2 in this one-by-one way, we now turn to a broader
comparison of the range of CV? values and the relative
contribution to these of HDD and HDI heterogeneity. In
the first place, figure 4 shows all the examples plotted
in relation to the values of C, and C,, with the CV? = 1
contour also overlaid. In 18 of the 65 cases, CV? > 1
indicating that heterogeneity at this level ought to be

[91]
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Figure 4. Host density dependent heterogeneity (C,,) plotted
against host density independent heterogeneity (C,). The
points correspond to the 65 examples in tables 2 and 3. The
solid curve is the contour where CV? = 1. The dashed line
separates points for which C, > C, from those for which
C, > C,. The inset magnifies the cluster of points nearest to
the origin. See text for further details. (After Pacala et al.
1990.)

NO REPLICATES

ALL REPLICATES

2
CV <1
» )

HDI>HDD
(14) ©)

HDI>HDD

Figure 5. Pie diagrams distinguishing between examples in
table 3 where CV? < 1 from those CV* > 1. (Left) : all 65 data
sets; (right) only the 26 data sets marked by asterisks which
include no spatial or temporal replicates. Where CV? > 1, the
shaded segment corresponds to host density independent
heterogeneity predominating and the unshaded segment to
where host density dependent heterogeneity is the more
important.

sufficient to stabilize the populations. Interestingly, in
14 of these 18 cases C, > C,, and, furthermore, in each
case C, > 2, indicating that the level of heterogeneity
in C, alone is sufficient to make CV?*>1. In the
remaining 47 examples in figure 4 where CV* < 1, the
majority (see inset) CV* show heterogeneity having no
appreciable affect on population regulation. In eight
cases, however, CV? > 0.6, at which level heterogeneity
could be promoting stability to some degree. Figure 5
further summarizes these results and also shows that
the pseudoreplication does not appear to be biasing the
different categories since the same qualitative picture
emerges from the reduced data set of 26 different
species pairs.

Thus, contrary to the popular view, this analysis
suggests that density independent spatial patterns of
parasitism (e.g. figure 1¢) may be more important in
promoting population regulation than density de-
pendent patterns. In the six cases where HDD is
important (i.e. C,, contributes substantially to the CV?
> 1), the density dependence is inverse in only one
case (data set 55; g = —1.97). This ratio is smaller
than expected from the overall frequencies of sig-
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INVERSE

DIRECT

Frequency

Slope (W)

Figure 6. Frequency distribution of estimated values of u
from table 3 which are significantly different from g =0
(p < 0.05).

nificant direct and inverse density dependent patterns
summarised in figure 6.

CONCLUSIONS

Although, the discrete-time models discussed in this
paper show that the ‘CV? > 1 rule’ may apply across a
wide variety of host—parasitoid interactions, several
fundamental assumptions about the biology of the
interactions have been made which do not apply to all
host—parasitoid systems.

(1) The assumption of coupled, synchronized inter-
actions restricts our analysis to parasitoids that are
effectively specialists on the one host species. The
dynamics of generalist parasitoids and their hosts can
be very different (Hassell & May 1986; Latto &
Hassell 1988) and will require a separate treatment.

(ii) Having discrete host and parasitoid generations
does not permit appreciable overlapping of host and
parasitoid generations which would be better repre-
sented in continuous time. Whether or not comparable
stability criteria exist for the affects of heterogeneity in
such continuous interactions has yet to be determined.

(iii) The extent to which the parasitoids encounter
hosts at random within patches, as assumed in our
models, and the importance of any deviations from
this, will depend in part on the size of the patches
relative to the foraging area of the parasitoids. This
introduces important questions on the scales at which
HDD and HDI heterogeneity exert their main effects. For
example, any covariance between parasitoid distri-
bution and local host densities per patch is likely to be
scale-dependent, since it depends critically on what a
foraging parasitoid recognizes as a patch (Waage
1979). Likewise, upI heterogeneity depends on any
differences in the attractiveness of patches independent
of the host density that they contain, as well as any
Poisson and other ‘errors’ in the parasitoids’ decision
making. Both of these are likely to be strongly
influenced by the scale of patchiness being examined.

(iv) By neglecting interference between parasitoids
or competition among hosts, the models in this paper
focus on situations where interactions between host
and parasitoid populations are of predominant im-
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cv’

Year

Figure 7. Values of CV? from data sets 23 to 31 in table 3.
These are annual replicates between 1980 and 1989. (From
T. H. Jones & M. P. Hassell, unpublished data.)

portance for the overall dynamics. Any additional
density-dependent and density-independent factors
that markedly influence fecundity or survival of the
hosts and parasitoids will also affect dynamics and
change the overall stability conditions. In neglecting
these, our emphasis is primarily on understanding the
extent to which one factor, the distribution of para-
sitism amongst hosts, can contribute to population
regulation.

(v) Many of the examples in tables 2 and 3 come
from single-generation studies with no temporal rep-
lication. We can thus only predict effects on dynamics
assuming that the estimated values of CV? are typical
for each interaction. In fact, those studies with some
temporal replication show considerable variation in
CV? from generation to generation, as shown by the
example in figure 7. Procedures are now needed for
evaluating how fluctuating CV? values affect popu-
lation dynamics.

An often contentious issue in ecology has concerned
the relevance of general models in understanding the
dynamics of natural systems in the field. This study
shows how relatively simple models of host—parasitoid
systems can profitably be applied to field data on levels
of parasitism in a patchy environment. Such het-
erogeneity has often been regarded as a complicating
factor in population dynamics, and one that rapidly
leads to analytical intractability. Clearly, this need not
necessarily be so. The CV?>1 rule explains the
consequences of heterogeneity for population dynamics
in terms of a simple description of the heterogeneity
itself. The rule gives a rough prediction of the effects of
heterogeneity and also identifies the kinds of het-
erogeneity that contribute to population regulation.

APPENDIX

In this appendix we derive simplified expressions for
the stability conditions (24) and (24). Let

SN, P) = E[nefeome], (A1)

where E () stands for expectation (average across all
patches), n is the relative abundance of hosts in a patch
(local abundance divided by mean abundance), g(n)
describes the tendency of local parasitoid abundance to
change with 7, and ¢ is a unit-mean random variable
that governs spatial variance in local parasitoid

Phil. Trans. R. Soc. Lond. B (1990) [96]
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abundance which is unrelated to local host density.
Also, the term e "™* is the probability of surviving in
a patch if the parasitoids in the patch search randomly
(see the explanation of model I in the text). In a pure
HDD model, € is a constant and equal to one, and in a
pure HDI model, g(n) is constant. Hassell ¢t al. (1990)
review the many previous studies that employ special
cases of (A 1).

Further, let g= E(g(n)) and g = E(ng(n)), and
observe that:

—Qf(N*, P*) /0P, = E(ng(n) ¢ e F*9™*), (A92)

The covariance between local parasitoid and un-

parasitized host density at the end of a growing season
is:

end-of-season | 5 parasitoids surviving
covariance | in patch ¢ /\hosts in patch ¢

E[parasitoids surviving
in patch ¢ }E{hosts in patch i}’
= E[(P*g(n,) €)(N*n, e ""0™9)]
— E[P*g(n,) €] E[N¥n, e " 0™],
= P*N*{E[n,g(n) e """
—Elg(n,) €] E[n,e””"" ™7 ]}

Of the three expectations in the above equation, the
first is given by (A 2), the second is g and the third is
given by (A 1). Thus

[end-of-season covariance] =

PEN*[Qf(N*, P¥) [OP,— gf(N*, P¥)].

At equilibrium, the mean parasitoid abundance per
patch is simply P*g, the mean end-of-season abundance
of unparasitized hosts is f{N*, P*) N* and f(N*,
P*)=1/A. Thus, C,, the end-of-season covariance
divided by the product of mean parasitoid and un-
parasitized host abundance (N*P*g/]}) is:
Co=[—A/g-Of(N*, P*)/0P,] —1. (A3)

Similarly, the equilibrium covariance at the beginning
of the season is:

[beginning-of-season covariance] =
E(N*nP*g(n) €) — N*P*g,
= N*P*[E(ng(n) €) —g],

and so the scaled covariance C, is:
C,=g/g—1

By using (A 3) and (A 4), we may write condition (2q)
as:

(A4)

C,+1/Co+1 < XA—1/AP*g = Z()). (A5)

Now, consider the equilibrium equation from (la):
1/A = E[ne"9™e], (A 6)

It is straightforward to show from (A 6) that P*
increases monotonically from zero to infinity as A
increases from one to infinity. As A-1, (A®6)
approaches:

I/A = E(n(1—P*g(n)¢)),

which reduces to 1/A = 1 —P*g’,
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Thus, as A—1, condition (A 5) approaches:
C,+1<1/A(C,+1),

and as A— oo, (A 5) approaches:

C,<—1

Turning now to condition (2b), we first observe
from the equilibrium equation from (15) that:

P* = N¥(1—-1/A).

Thus (26) may be written as:

P*(—Qf(N*, P*)/OP,) > N*-Qf(N*, P*)/ON,.
If P,=e* and N, =¢”, then

A (N*, P*)/0X = P*Qf(N*, P*) /0P,

and

Of(N*, P*)/0Y = N* Qf( N*, P*) /ON,,

and so condition (24) may be written:
—Qf(N*, P*) J0X > Qf(N*, P*)/0Y.

Because 9f/0X < 0 (host survival decreases as para-
sitoid density increases) this condition is always
satisfied unless 9f/0Y > 0 (an increase in host abun-
dance increases host survival). Although 0f/0Y may
indeed be positive in some cases involving parasitoid
satiation, in the majority of biologically plausible
models there is either no density dependence affecting
the host (9f/0Y =0) or (9f/0Y <0). As a result,
condition (2a) is usually necessary and sufficient for
stability.

In summary, therefore, condition (24) is equivalent
to:

C,+1 < (C,+1)Z(A),
and condition (24) is equivalent to:

—Jf(N*, P*) /X > f( N*, P*)/0Y.
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Discussion

G. A. TineLEY (Imperial College of Science, London, U.K.). We
have seen that patch size is of importance in the observed
spatial pattern. What is the likely sensitivity of this type of
analysis to the selection of inappropriate patch size in field
observations?

M. P. HAssELL. As our estimates of CV? are weighted for host
density per patch, part of the problem of spatial scale is
avoided: heterogeneity is measured at the level of the
individual hosts. However, scale remains important in a
number of ways. First, our assumption that the exploitation
of hosts within a patch is random is satisfactory for relatively
small patch sizes, but could introduce significant error as
patch size gets large. Second, is the very interesting problem
of identifying the scales at which host density dependent and
host density independent heterogeneity have their maximal
effect. These need not necessarily occur at the same scale.
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